

Dominic Ainger, Arup

Steve Argent, Arup

Prof. Stuart Haszeldine, SCCS/University of Edinburgh

Berlin Forum on Sustainable Fossil Fuels, 18-19 October 2010

#### **Scope of the Study**

s.haszeldine@ed.ac.uk

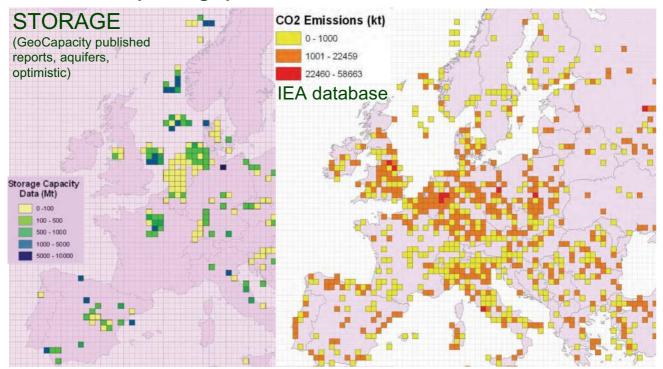
- Commissioned by EC Directorate General Energy (DG-ENER)
- 8 months duration, February-October 2010
- Building on previous studies of storage capacity, e.g. Castor, GESTCO & GeoCapacity
- Databases of CO<sub>2</sub> sources and potential storage sites to be expanded to 36 countries; EU27 + Norway + Switzerland + Western Balkans
- Development of capture scenarios and blueprints for core transport infrastructure at 2030 and 2050



ARUP

🔘 🎯 ARUP

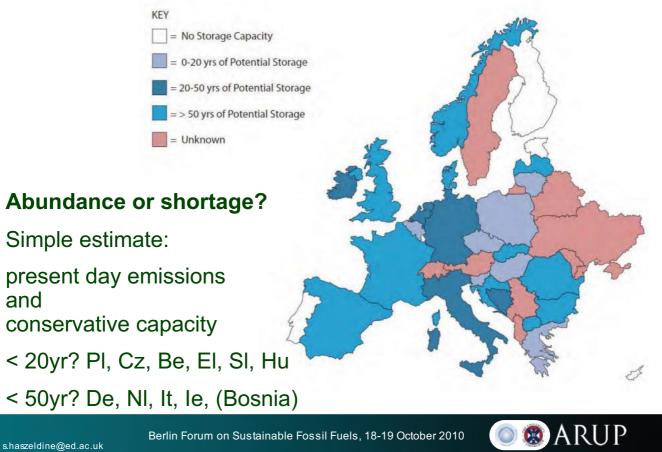
#### **Project Drivers**


- Large infrastructure projects take a long time to plan and construct
- A vision for CO2 infrastructure aids strategic planning, with potential EC role if significant cross-border transport and pan-European network
- Possible outcome: inclusion of CO<sub>2</sub> infrastructure in the next revision of the Trans-European Networks Guidelines for Energy, due Summer 2011



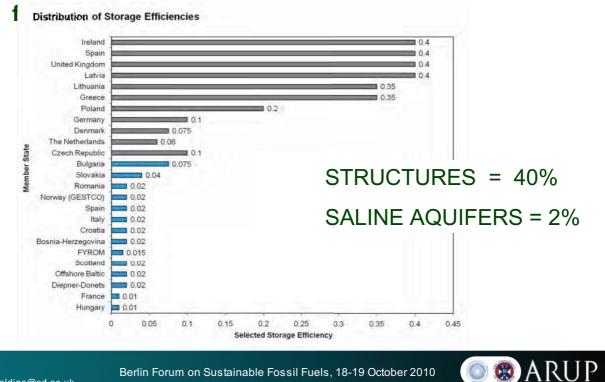


#### **WP 1 – Storage Evaluation**

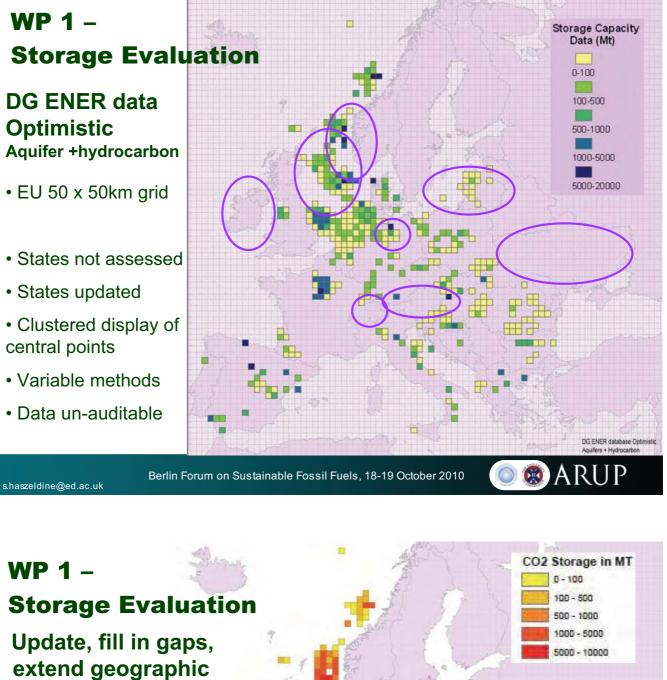

STORAGE Analyse results from previous projects, notably GeoCapacity EMISSIONS plot large point sources - IEA database

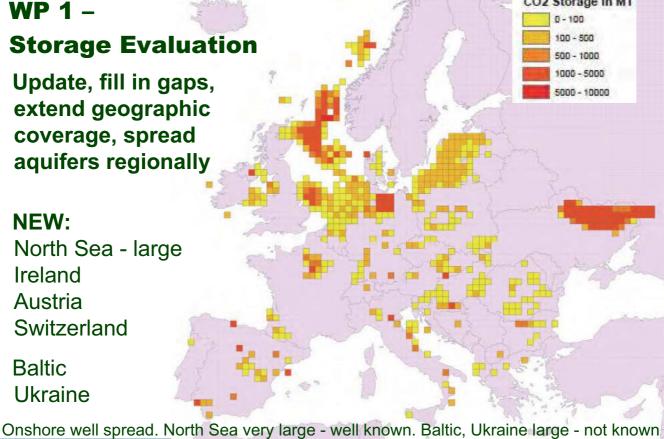


s.haszeldine@ed.ac.uk




#### WP 1 – Storage Evaluation





#### WP 1 – Storage Evaluation

DG Energy-review/establish coherent methodologies for assessing storage capacities ==> Efficiency



s.haszeldine@ed.ac.uk





Berlin Forum on Sustainable Fossil Fuels, 18-19 October 2010

🖉 🕲 ARUP

## WP 2 – Development of a coherent and

#### complete European database

CO2 sources (2030 and 2050) and storage sites

| CNTRY_NA_1 | CO2_2030_L | CO2_2050_L | CO2_2030_M | CO2_2050_M |   | FID | Shape    | CAP_TOTAL  | I |
|------------|------------|------------|------------|------------|---|-----|----------|------------|---|
| Greece     | 0          | 0          | 0          | 1          |   | 0   | Polygon  | 18.6287    | 1 |
| Greece     | 0          | 0          | 0          | 1          |   | 1   | Polygon  | 81.811809  | 8 |
| Greece     | 0          | 0          | 0          |            |   | 2   | Polygon  | 89.029215  |   |
| Greece     | 0          | 0          | 0          |            |   | 3   | Polygon  | 323.67717  |   |
| Greece     | 0          | 0          | 0          |            |   | 4   | Polygon  | 315.49619  |   |
| Greece     | 0          | 0          | 0          |            |   | 5   | Polygon  | 141.376061 |   |
| Greece     | 0          | 0          | 0          |            |   | 6   | Polygon  | 11.431558  |   |
| Greece     | 0          | 0          | 0          |            |   | 7   | Polygon  | 148.098588 | 1 |
| Greece     | 0          | 1.6        | 0          |            |   | 8   | Polygon  | 235.768742 |   |
| France     | 0          | 0          | 0          |            |   | 9   | Polygon  | 25.789614  |   |
| France     | 0          | 0          | 0          |            |   | 10  | Polygon  | 52.01236   | 1 |
| Austria    | 0          | 0          | 0          |            |   | 11  | Polygon  | 312.203089 |   |
| 1202       |            |            |            |            |   | 12  | Polygon  | 323.67717  |   |
| Austria    | 0          | 0          | 0          | 1000       | - | 13  | Polyaion | 303 67717  | l |

- Difficulties experienced in the lack of transparency and auditability of the GeoCapacity database
- Major gaps in data coverage have now been filled, although often at a very preliminary level of assessment.

s.haszeldine@ed.ac.uk

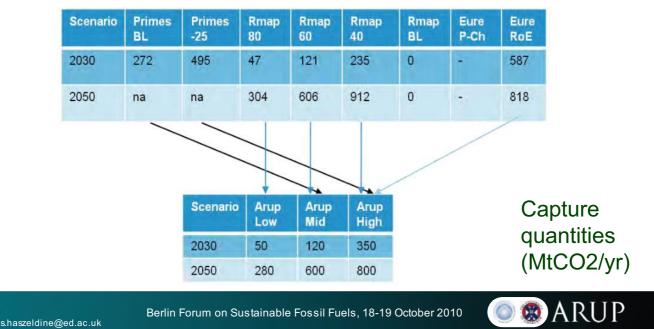
Berlin Forum on Sustainable Fossil Fuels, 18-19 October 2010

## WP 3 – Future CO2 Scenarios

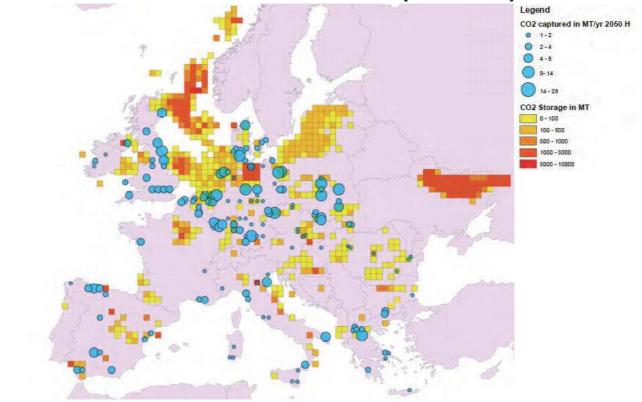
Considering only sources >1Mt CO<sub>2</sub>/year

**Reviewed 9 existing scenarios from 4 sources:** 

- EU27: Baseline 2009 (Primes Ver. 4 Energy Model)
- DG-Clima EU27: "25+5" (Primes Model)
- UCL/SENCO Low Emission European Energy Scenarios
- Eurelectric "Role of Electricity" scenario
- Eurelectric "Power Choices" scenario
- European Climate Foundation Roadmap 2050 scenarios; 40% / 60% / 80% / 100% renewables




🔘 🗭 ARUP


#### WP 3 – Future CO2 Scenarios

 Utilised existing scenarios as "foundations" for 3 Arup scenarios; Low, Medium and High CO2





#### WP 3 - Future CO2 Scenarios (2050 Hi)





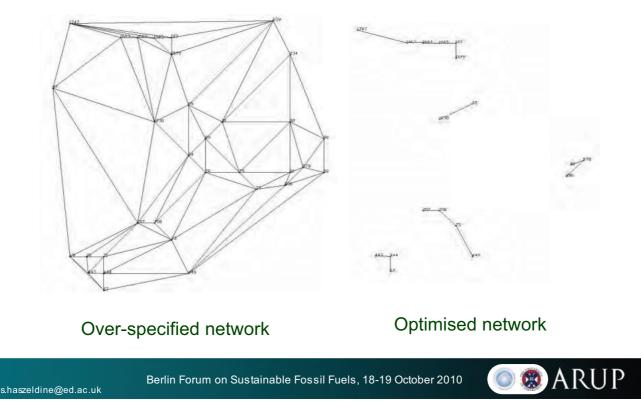
#### **WP 4 – CO2 Transport Infrastructures**

- Identifying a "blueprint" for transport infrastructure at 2030 and 2050, for each H/M/L capture scenario
- Matching sources to sinks, using optimisation routines in hydraulic models, considering
- Throughput/volume
  Design velocity
  Economic cost model
  Storage site dataset from WP1 simplified
  Source dataset from WP3

🔘 🗭 ARUP

🔘 🕲 ARUP

s.haszeldine@ed.ac.uk


Berlin Forum on Sustainable Fossil Fuels, 18-19 October 2010

#### **WP 4 – Modelling Methodology**

- Fully functioning hydraulic model
- Assumed dense-phase (supercritical) CO2
- Assumed design velocity of 2m/s
- Tested different network types/shapes; cost premium for ring mains, so one route deemed adequate
- Ant Colony Optimisation Algorithm
- Sole optimisation criterion is cost (capital)
- Cost model derived from IEA/IPCC CO2 pipeline data

## **WP 4 – Modelling Methodology**

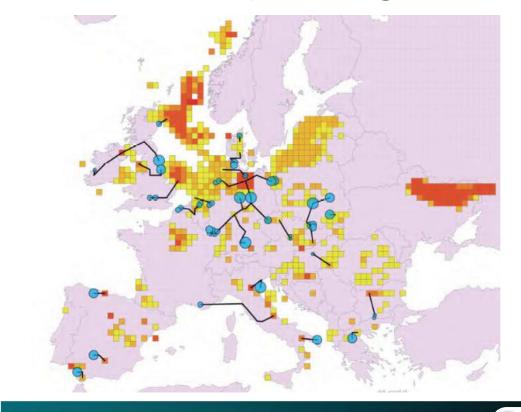
#### Network creation & optimisation



## WP 4 – CO2 Transport Infrastructures; Results

 Model simulations run and optimised for 2 storage scenarios, 3 CO2 scenarios, and 2 design horizons to create 12 network maps...

#### All storage available


- 2030 Low CO2
- 2030 Mid CO2
- 2030 High CO2
- 2050 Low CO2
- 2050 Mid CO2
- 2050 High CO2

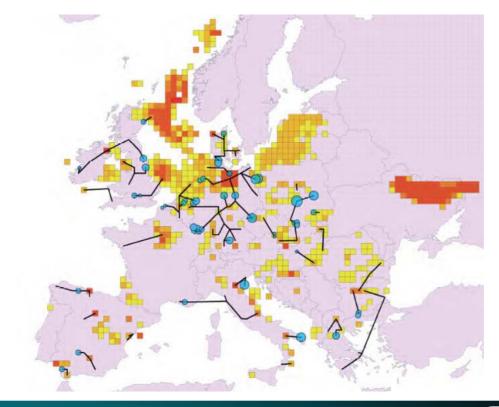
Offshore storage only

- 2030 Low CO2
- 2030 Mid CO2
- 2030 High CO2
- 2050 Low CO2
- 2050 Mid CO2
- 2050 High CO2

🔘 🍘 ARUP

#### WP 4 – 2030 Low; All Storage Available

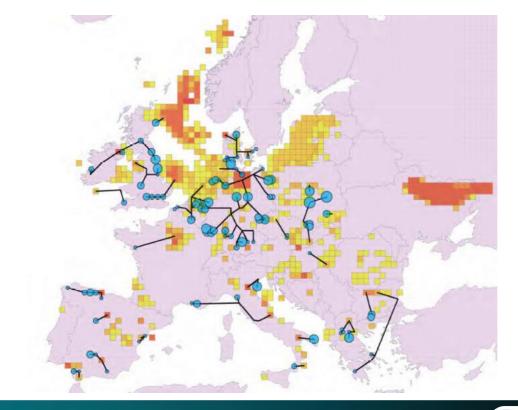



Simulation does not consider technical ability to develop CO2 storage.

s.haszeldine@ed.ac.uk

Berlin Forum on Sustainable Fossil Fuels, 18-19 October 2010




#### WP 4 – 2030 High; All Storage Available

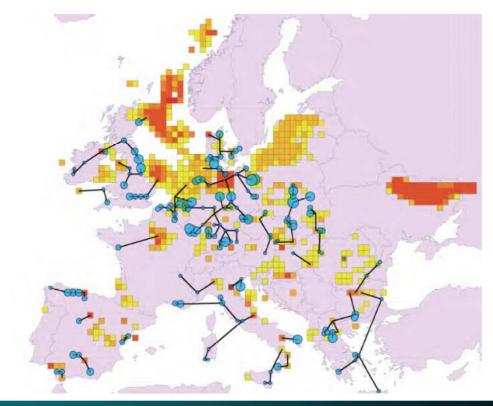


Simulation does not consider technical ability to develop CO2 storage.



#### WP 4 – 2050 Low; All Storage Available

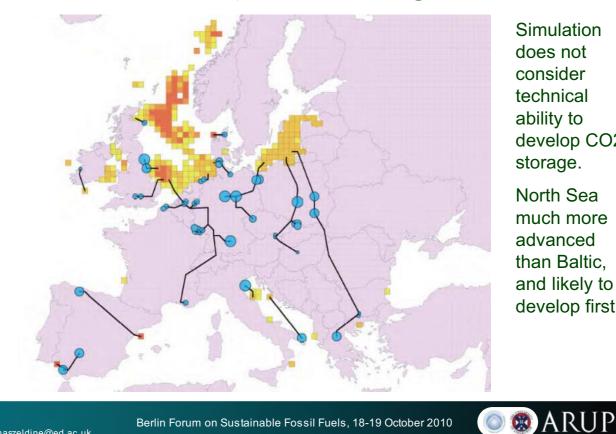



Simulation does not consider technical ability to develop CO2 storage.

s.haszeldine@ed.ac.uk

Berlin Forum on Sustainable Fossil Fuels, 18-19 October 2010




#### WP 4 – 2050 High; All Storage Available

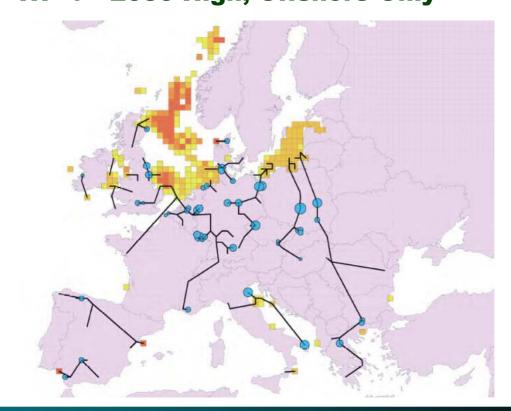


Simulation does not consider technical ability to develop CO2 storage.



#### WP 4 – 2030 Low; Offshore Only



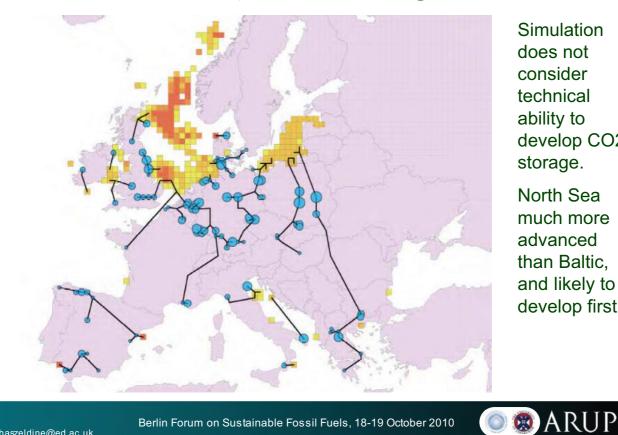

Simulation does not consider technical ability to develop CO2 storage.

North Sea much more advanced than Baltic, and likely to develop first.

s.haszeldine@ed.ac.uk

Berlin Forum on Sustainable Fossil Fuels, 18-19 October 2010

## WP 4 – 2030 High; Offshore Only



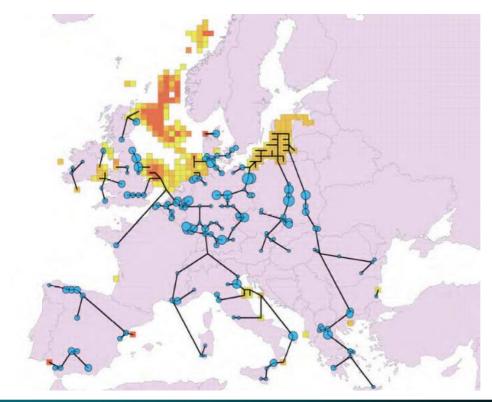

Simulation does not consider technical ability to develop CO2 storage.

North Sea much more advanced than Baltic, and likely to develop first.



#### WP 4 – 2050 Low; Offshore Only




Simulation does not consider technical ability to develop CO2 storage.

North Sea much more advanced than Baltic, and likely to develop first.

s.haszeldine@ed.ac.uk

Berlin Forum on Sustainable Fossil Fuels, 18-19 October 2010

#### WP 4 – 2050 High; Offshore Only



Simulation does not consider technical ability to develop CO2 storage.

North Sea much more advanced than Baltic, and likely to develop first.

s.haszeldine@ed.ac.uk

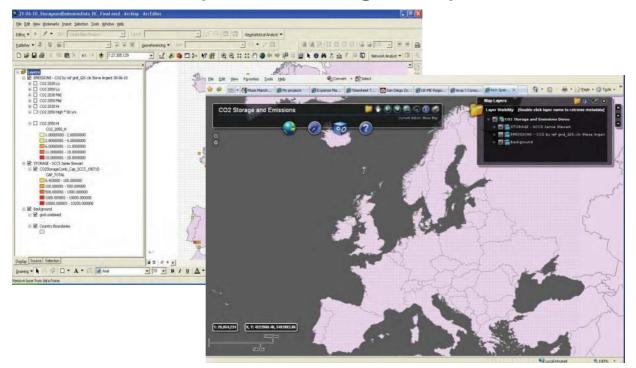


#### WP4 – Summary

- Range in total length / cost of CO2 pipeline networks reflects range in CO2 source predictions, from 6879km / €2,074 million (2030 Low CO2), to 15013km / €12,667 million (2050 High CO2) or 20041km / €19,782 million (2050 High CO2; offshore only)
- No regretted pipeline routes at 2030
- Network shape and extent of cross-border transportation is highly dependent on the availability/acceptability of onshore storage
- Costs are indicative, but significant value in promoting/gaining acceptance of onshore storage

s.haszeldine@ed.ac.uk

Berlin Forum on Sustainable Fossil Fuels, 18-19 October 2010


ARUP

ARUP

8

## WP 5 - Data accessibility

Communication options for a single European database...





# Conclusions, Oct 2010

#### STORAGE

- Total storage abundant. Some States limited nationally
- Previous work on storage capacity not transparent
- Availability and acceptability of onshore storage is a critical judgment
- Dominant secure storage tonnage is offshore North Sea
- Baltic and Ukraine large potential (very) poorly known
- EC actions: desk study to upgrade method, quality & reliability of assessment, and easy access to data.
- EC Injection tests essential to validate saline formations



## **Conclusions, Oct 2010**

#### SOURCES

- Wide variation in future scenarios of CO2 sources, from 0 to 800 MtCO2/yr
- These differences in CO2 quantities captured though CCS have a significant impact on the extent of CO2 transportation networks

🔘 🥨 ARUP

### **Conclusions, Oct 2010**

**TRANSPORTATION INFRASTRUCTURE** 

- Hydraulic models with optimisation algorithms can be used to identify key strategic planning issues
- Significant cost premium for security of supply
- Several options within 10-15% of optimal cost solution - suggests flexibility
- Progression from 2030 to 2050 further analysis required. Magnitude of flow increases and economic factors make 'future-proofing' unattractive
- Gaps in current cost models, e.g. sink development
- Importance of clusters, pipeline dynamics and

COMMOBee பெற்ற விலக்கள் குடுக்குள் குடுத்து காடு பிலிக்கு 2010 shaszeldine@ed.ac.uk

# **Thank you**

Dominic Ainger, Arup Steve Argent, Arup Prof. Stuart Haszeldine, SCCS/University of Edinburgh



🔘 🎯 ARUP