

Fast Workflows for CO₂ Containment & Leakage Risk Assessments

Hariharan Ramachandran¹, Iain de Jonge-Anderson¹, Florian Doster¹, Sebastian Geiger² & Uisdean Nicholson¹

1 – Heriot-Watt University, UK, 2 – Delft University of Technology, Netherlands

04/12/2023

- Introduction to CCS & Storage Containment
- Vertical Equilibrium Modelling and CO2lab
- Fast workflows for CCS Assessments
 - Storage capacity and spill risk
 - Fault leakage
- Summary & Outlook

- UK government has ambitious CCS targets (30 Mt/yr by 2030-2035, > 50 Mt/yr by 2035)
- Message Storage must increase multi-fold to meet the IPCC 1.5 °C goal scenarios
 - Impetus to develop fast technologies to assess storage security, develop injection strategies, etc.

Possible Storage Concerns

4

(Benson., 2006)

WATT Up Seis Strat

NIVERSITY

Sedi

Motivation → Fast Screening + Leakage Risk + Uncertainty?

Issue

Assessing secure storage containment is computationally expensive = Flow + Geomechanics in 3D for the entire domain

Goal

Develop fast screening tools using Multiscale – Multiphysics approach to get quick estimates under uncertainty

Outline

- 1. Spill point Analysis
- 2. Capacity Estimation
- 3. Fault Leakage

Seis Strat

Methods

Vertical Equilibrium Models

Why Vertical Equilibrium (VE) Modelling?

0.8 0.6

0.2

0.8

0.6

0.2

0.8

10000

10000

10000

Lateral Distance [m]

- Once CO₂ in injected into a reservoir
 - Thin and long reservoirs \rightarrow vertical flow << overall flow
 - @Reservoir(P,T) \rightarrow Density of CO₂ << Density of Brine
 - Gravity segregation occurs due to density difference
 - No vertical flow between phases -> Vertical Equilibrium
- The vertical dimension can be eliminated from the equations \rightarrow 3d problems becomes a 2d problem \rightarrow Computation Advantage

Further Reading (Book) - Nordbotten, J.M. and Celia, M.A., 2011. Geological storage of CO2: modeling approaches for large-scale simulation.

CO2lab of MRST

ud Seis Strat

Further Reading (Book)- Lie, K.A., 2019. An introduction to reservoir simulation using MATLAB/GNU Octave: User guide for the MATLAB Reservoir Simulation Toolbox (MRST). Cambridge University Press.

- 7

Storage Containment Assessment

04/12/2023

Motivation → Storage Containment (Seismic to Capacity workflows)

Issue \rightarrow Seismic and well data used to define storage capacity based on Net Pore Volume:

 $M_{CO_2t_g} = GRV \times NTG \times \phi_{eff} \times (1 - S_{wirr}) \times \rho_{CO_2}$ Refined using flow simulations at site-level. **Solution** \rightarrow Use reduced complexity models (static and dynamic tools) to arrive at a realistic capacity estimates in screening workflow

Seis Strat

Sedi

Study Area

- Our study focuses on an area of the Malay Basin, offshore Peninsular Malaysia.
- This basin is being
 appraised for CO₂
 storage potential.

- A 440 km² area is mapped using 3D
 seismic.
- The area gently slopes downdip to the west and contains an anticline.

- A simple 3D grid of the reservoir is populated with porosity and permeability values obtained from gaussian distributions.
- The total capacity of the grid is **32 GtCO2**

Structural Trapping

- Using just the geometry of the reservoir, a static trapping framework is built.
- The framework shows traps (structural highs), trapping regions (that feed traps) and pathways (routes from one trap to another)
- This is used to calculate the total structurally trapped capacity:
 12.5 GtCO₂

11

de Jonge-Anderson, I., Ramachandran, H., Doster. F., and Nicholson U.. Storage Efficiency and Reduced Complexity Modelling. MRST Conference (Poster Session), 2023.

Spill Analysis

- A series of trapping chains are tested to determine the optimal well placement that allows consecutive filling of structural traps.
- A trapping chain is a series of traps along a spill path that could be filled from one injection point. de Jonge-Anderson, I., Ramachandran, H., Doster. F., and Nicholson U.. Storage Efficiency and Reduced Complexity Modelling. MRST Conference (Poster Session), 2023.

VE Modelling

VE simulations approximate 3D fluid behaviour in 2D, thus reducing computational time

50 years of injection (3MT/year) followed 950 years of migration

440 simulations. All other parameters fixed.

×10⁵ 7.34 7.32

Map of storage capacity by

injection well location

Capacity is defined as the pore space occupied by CO₂ at end of simulation. The capacity from this optimised scenario is **150 MTCO₂**

Fault Leakage Risk

04/12/2023

Fault Leakage + Uncertainty?

Issue \rightarrow Assessing leakage is computationally expensive = Flow + Geomechanics in 3D for the entire subsurface domain

Goal → Develop fast screening tools using Multiscale – Multiphysics approach to get quick estimates for fault leakage under uncertainty

Accelerating CCS Technologies INTEGRATED GEOLOGICAL CO₂ LEAKAGE RISK ASSESSMENT

Propose → Vertically Integrated Models + Fault Leakage

Conceptual Leakage Scenario

• Pattern simulations helps build relationship for fault leakage

• CO2 layer below fault impedes water flow along fault

16

• Steady-state flux is a good conservative leakage estimate

Ramachandran, H., Doster, F., and Geiger, S.. A Quick Approach to Model Fault Leakage Modeling during CO2 Storage within Vertical Equilibrium Modelling Approach. Interpore PMTTT (Presentation), 2023. → https://www.youtube.com/watch?v=L5f5IP7Yf2U

- Similar mathematical structure to multi-continuum simulations
- What is $Q^{12}_{\alpha}(p^1_{\alpha}, s^1_{\alpha}, p^2_{\alpha}, s^2_{\alpha})$?
- Simplest approach:
 - $Q_{\alpha}^{12} = -T^{RR} \lambda_{\alpha}^{RR} (\Delta \rho g(s_{\alpha}^{1} H_{R} + L_{C}) + (p_{a} p_{0}))$
 - $T^{RR} = A_f L_C^{-1}$
 - $-\lambda_{\alpha}^{RR}$ is upstream weighted

Fault Model Application

18

Ramachandran, H., Doster, F., March, R., Maier, C., Geiger, S., de Jonge-Anderson, I., and Nicholson U.. Fast Workflow for Fault Leakage Modeling During CO2 Storage. MRST Conference (Presentation), 2023. → https://www.youtube.com/watch?v=jloaOP-F5Lk

Open Fault Leakage

- Injection rate = 0.75 MT/year for 50 years
- Fault permeability = 0.01md, width = 5m
- Total injection = 37.5Mt
- Total Leakage = 0.46MT or 1.23% of injected

CO2 leaks once it encounters the fault

Ramachandran et al., 2024 (In prep)

Fault Capillary Pressure

- Core zone Protolith 10.0 (MPa) Fault 1.0 Capillary Pre $P_c(S_w) = P_e$ 0.1 0.30 8 0.3 0.5 0.7 0.80 õ 0 -Water Saturation
- Injection rate = 0.75 MT/year for 50 years, Total injection = 37.5Mt
- Fault permeability = 0.01md, width = 5m
- Total Leakage = 0.08MT or 0.22% of injected (Pe = 0.5 bars)
- Total Leakage = 0.00MT or 0.00% of injected (Pe = 1.0 bars)
- Capillary pressure will delay and decrease leakage

- Next \rightarrow Fault geomechanics
 - Pressure impact on perm/poro
- Refine Flux function

Damage

1000

What's next: CO2lab of MRST

Summary & Outlook

Summary

- Fast workflows presented here are very useful to perform assessments of CO₂ storage capacity and containment
 - Plume behaviour and fault leakage risk can be assessed under uncertainty
 - Fast running times means these are ideal for uncertainty modelling, sensitivity analysis and value-of-information assessments.

Outlook

- CO2lab with dynamic capacity predictor tool
- CO2lab with leakage risk
 - Refined fault leakage models with geomechanics

Acknowledgements: The research is made possible by generous support from Petronas

Thanks for listening! Questions

SCCS PhD Consortium 2023 Bringing academia and industry together

Thank you